Effettua una ricerca
Antonio Masiello
Ruolo
Professore Ordinario
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Meccanica, Matematica e Management
Area Scientifica
Area 01 - Scienze matematiche e informatiche
Settore Scientifico Disciplinare
MAT/05 - Analisi Matematica
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE1 Mathematics: All areas of mathematics, pure and applied, plus mathematical foundations of computer science, mathematical physics and statistics
Settore ERC 3° livello
PE1_8 Analysis
We give the details of the proof of the existence of an isomorphism between some homological groups related to the critical groups of the energy functional of a Finsler manifold in the two end-points boundary conditions.
In this paper, we first study some global properties of the energy functional on a non-reversible Finsler manifold. In particular we present a fully detailed proof of the Palais--Smale condition under the completeness of the Finsler metric. Moreover we define a Finsler metric of Randers type, which we call Fermat metric, associated to a conformally standard stationary spacetime. We shall study the influence of the Fermat metric on the causal properties of the spacetime, mainly the global hyperbolicity. Moreover we study the relations between the energy functional of the Fermat metric and the Fermat principle for the light rays in the spacetime. This allows one to obtain existence and multiplicity results for light rays, using the Finsler theory. Finally the case of timelike geodesics with fixed energy is considered. The research that led to the present paper was partially supported by a grant of the group GNAMPA of INdAM
Condividi questo sito sui social