Effettua una ricerca
Massimo La Scala
Ruolo
Professore Ordinario
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Ingegneria Elettrica e dell'Informazione
Area Scientifica
Area 09 - Ingegneria industriale e dell'informazione
Settore Scientifico Disciplinare
ING-IND/33 - Sistemi Elettrici per L'Energia
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE7 Systems and Communication Engineering: Electrical, electronic, communication, optical and systems engineering
Settore ERC 3° livello
PE7_12 - Electrical energy production, distribution, application
The ZERO Project is aimed to demonstrate that the use of energy variable is a useful tool to redefine the structure of both the individual building and its installations and the organization of a whole neighborhood where each element (buildings, equipment, infrastructure) are in a position to communicate with each other using the technology provided by the ICT sector. The activities aim to provide fast-prototyping, instrumentation, methodologies and equipment for material characterization of new components in the field of energy efficiency, microgeneration, renewables and, in general, of energy production systems dimensioned on the end user needs (energy hubs, district heating/cooling, etc.).
Energy source management in networked enterprises is one of the crucial tasks of recent times: different energy requests as well as distribution among node-enterprise due to variety of production loads and duties exchanges may in fact bring to un-optimal energetic balance of the network. The idea of optimal balancing of energy sources within a set of nodes of an enterprise network, even though temporarily cooperating, by endeavoring a systemic perspective is the rationale of the present paper. A methodology for the optimal dispatch of energy sources in hybrid as well as isolated energy systems has been devised to this aim. The core of the methodology is based on the formulation and solution of a nonlinear discrete optimization problem aimed at optimizing input and output time trajectories for a set of combined power-generation and storage technologies. The proposed approach is general enough to be susceptible of implementation in any network of enterprises to optimize the energy dispatching.
The paper proposes a methodology for the optimal dispatch of energy sources in hybrid and isolated energy systems. The proposed approach is based on the formulation and solution of a nonlinear discrete optimization problem aimed at optimizing input and output time trajectories for a set of combined generating and storage technologies. Loads and interruptible loads are among controlled variables, and are modeled according to their interruption costs. The approach is general enough to be applied to any hybrid system configuration and was developed having in mind the complex hybrid system architectures comprising several competing storage technologies (battery, pumping, and hydrogen). Test results are aimed at showing the feasibility of the proposed methodology, comparing optimal trajectories to suboptimal system behavior given by load-following strategies.
In this paper we address the issue of solving a Unit Commitment (UC) problem including the transmission network with Active Switching (AS). The switching operation consists in a dynamic reconfiguration of the network, i.e. a tripping of some lines; this paradigm is named UC with Optimal Transmission Switching (UCOTS). The UCOTS is a novel way to leverage grid controllability, that may re-route the electrical energy in the network to resolve some line congestion and reduce the overall production cost, e.g. by allowing to increase the power output of cheaper units. The UCOTS can also aim at improving other system performances such as stability. This work provides a tight Mixed Integer Linear Programming (MILP) formulation of the UCOTS. It proposes to approximate the quadratic thermal cost objective function by means of a perspective cuts (PC) piece-wiselinear function and to perturb it in a special way, in order to break some of the symmetries deriving from the OTS variables.We show that, combining these two ingredients and using recent tight UC constraints formulations, optimal and near-optimal solutions can be obtained in reasonable computing time for a custom 81 units- IEEE 118 bus test case without resorting to any kind of heuristic.
Advanced distribution management system (DMS), an evolution of supervisory control and data acquisition obtained by extending its working principles from transmission to distribution, is the brain of a smart grid. Advanced DMS assesses smart functions in the distribution system and is also responsible for assessing control functions such as reactive dispatch, voltage regulation, contingency analysis, capability maximization, or line switching. Optimal power flow (OPF)-based tools can be suitably adapted to the requirements of smart distribution network and be employed in an advanced DMS framework. In this paper, the authors present a methodology for unbalanced three-phase OPF (TOPF) for DMS in a smart grid. In the formulation of the TOPF, control variables of the optimization problem are actual active load demand and reactive power outputs of microgenerators. The TOPF is based on a quasi-Newton method and makes use of an open-source three-phase unbalanced distribution load flow. Test results are presented on the IEEE 123-bus Radial Distribution Feeder test case.
Electromechanical transients need to be controlled quickly. After deregulation, Transmission System Operators (TSOs) have direct control only on transmission facilities; consequently, the transmission grid has to be equipped with fast actuators in order to guarantee the fast response needed to control electromechanical transients. The possibility to change continuously impedances across the grid is given by modern electronic devices such as Thyristor-Controlled Series Capacitors (TCSCs) which can provide some ductility to the system and avoid cascade events. In this paper, a trajectory sensitivity-based approach for the corrective control of power system transient stability through dynamic series compensation is proposed.
This paper summarizes all research advancements obtained by the Polytechnic of Bari through the RES NOVAE Project activities in the field of the smart district. In this context it is important to investigate and apply new efficient technologies solutions for the building management in order to optimize the energy usage and to improve the inhabitants’ comfort. The integration of the ICT technologies and the building automation systems together with innovative renewables energy solutions is studied. Moreover, suitable control algorithms, communication protocols and measurement devices are proposed and tested to improve the efficiency of the building energy management systems.
The electric distribution systems of the 21st century are characterized by the huge diffusion of distributed generations (DG) units. Their always increasing number, however, asks for new and advanced technical solutions for management and optimization of low voltage grids, whose design and efficiency is still strictly dependent to old operative conditions and schemes. In this paper, a methodology aimed to achieve power flow control and optimization on low voltage distribution systems by means of an Unified Power Flow Controller (UPFC) is presented. Tests have been made on three different operating conditions and their numerical results demonstrate how this device can be positively applied even to electric distribution networks in order to solve some typical issues such as loss reduction, power flows inversion and so on.
With the diffusion of standardized communication protocols in smart transmission systems, it is expected that digital distance relays will become active elements in monitoring and control architecture. Real-time tuning of distance relays settings will allow to overcome the classical conflict between dependability and security, or to avoid improper operation of such devices in vulnerable conditions and during major blackout events. In this paper, along with the presentation of a monitoring and control architecture that integrates such devices into SCADA/EMS, a system security monitoring function, based on simulated system trajectories and their closeness to distance relay zones, is proposed for system operation and contingency analysis.
Electric mobility is one of the main features concerning the development of a smart city. The huge quantity of electric vehicles that will be soon daily used by thousands of people will also represent a severe test for the actual low voltage urban distribution grids, that will have to face and manage new technical challenges. EV’s charging operations have to be controlled with high precision and efficiency, in order to avoid grid congestion, bad power quality and many other problems. In this paper, a methodology aimed at optimizing EVs charge, taking into account technical constraints of power networks, congestions or other security constrained issues at LV level is presented.
Although main characteristics of supergrids and smart grids have not been univocally identified yet, it can be foreseen that the networks of the future will be generally characterized by more sensors, computation, ICT, monitoring and control functions. In such scenario, it is foreseeable that ordinary power system components will be improved in order to develop more complex on-line control functions. Experience with past severe cascading events showed how in many cases a selective approach to system protections could have avoided blackouts, or mitigated their impact. In this paper, a method is proposed to automatically adjust tripping zones of relays in order to balance protection system dependability versus the functional security of the system. A nonlinear programming technique is proposed for avoiding improper tripping of distance relays. The approach aims to modify the settings of the protection system (i.e. distance relays) in order to guarantee that no contingency can cause line tripping due to large swings. The tuning of protection schemes can be operated in a “preventive control fashion”, ensuring transient/voltage stability and keeping system trajectories off the tripping areas of distance relays (practical stability) with respect to selected major contingencies. Control actions (relay settings) are evaluated through the formulation and the solution of a nonlinear optimization problem. Time domain simulations associated to the optimization problem embed distance relay in the dynamic system representation. The approach treats concurrently, in the same optimization problem, multiple contingencies. In this way, it is possible to find out the best compromise between dependability and security during contingency analysis. The procedure can be applied in the extended real-time control framework of power system operation or, simply, whenever stressed conditions are experienced in the power system. Test results are provided for a test case based on a representation of the Italian power grid, along with a relevant part of the UCTE power system, during the transient that conducted to the 2003 Italian blackout. The computational burden associated is limited since basically it consists in time domain simulations of transients caused by contingencies selected after contingency screening. Since only tripping areas are modified no operative costs are associated to this security function.
In questo progetto, attraverso la realizzazione di un sistema di automazione basato sull’integrazione tra diverse tecnologie quali SCADA (Supervisory Control And Data Acquisition), GIS (Geographic Information System), webbased control e, in generale, di tutte le metodologie disponibili nell’area della Distribution Automation, si intende dimostrare, tramite l’applicazione su reali aziende distributrici, come sia possibile localizzare e controllare i processi, quantificare i fenomeni, pianificare lo sfruttamento delle risorse e programmare le manutenzioni in maniera più efficace rispetto alle tecnologie esistenti. L’efficacia dell’uso delle tecnologie proposte va valutato anche in relazione ai rilevanti cambiamenti che si stanno realizzando negli ultimi anni in questo settore quali, ad esempio, i nuovi requisiti richiesti dalla ri-regolamentazione del mercato dell’energia, la nascita delle multi-utility, l’utilizzo sempre più diffuso della Generazione Distribuita e l’imminente sviluppo delle cosiddette distributed utility o virtual utility. L'impiego di un sistema di Automazione della Distribuzione può consentire di ottenere: • ottimizzazione gestionale: miglioramento del servizio, recupero di efficienza, pianificazione aziendale, raccolta, elaborazione ed archiviazione di dati statistici, adattabilità dell'esercizio al mutamento delle condizioni operative; • affidabilità e sicurezza: telesorveglianza in continuo, tempestività nella segnalazione di emergenze, predisposizione piani di intervento, riduzione dei tempi di intervento in caso di guasto, manutenzione preventiva e predittiva; • qualità del servizio e sua misurabilità: soddisfazione del cliente, miglioramento del livello di trasparenza e di comunicazione nei rapporti con l'utenza; • integrazione dei sistemi di telecontrollo ed informativi del territorio con le economie di scala: approccio unificato e coordinato della gestione dei sistemi di automazione e telecontrollo assieme ai sistemi che gestiscono le informazioni geografiche del territorio sul quale le reti sono dislocate, contribuendo in tal modo a sviluppare preziose economie di scala e a rafforzare il legame tra coordinamento territoriale, sviluppo sostenibile e salvaguardia ambientale. • supervisione e controllo integrate anche in presenza di Generazione Distribuita: la sempre maggiore affermazione di questa tecnologia per la produzione di energia elettrica e calore impone nuove modalità di gestione delle società di distribuzione del gas e dell’energia elettrica nonché problemi inerenti la gestione delle reti assolutamente nuovi; • economie di scala derivanti dai più recenti paradigmi per l’erogazione dei servizi pubblici quali: Multi-Utility, Distributed Utility e Virtual Utility; in questo contesto, grazie all’utilizzo di nuove tecnologie ICT e metodologie di controllo della Distribution Automation, è possibile realizzare una integrazione sempre maggiore tra utility eterogenee (ad es. energia elettrica e gas), diffuse su un territorio non necessariamente sovrapponibile o, comunque, distribuite, anche in modo capillare, su scala geografica estesa (regionale, nazionale, ecc. ). Il progetto di ricerca coinvolge due aziende distributrici che insistono sul territorio pugliese: una Azienda Distributrice dell’Energia Elettrica (AMET –Trani) e di una Azienda Distributrice del Gas (AMGAS-Bari). L’obiettivo finale che si intende raggiungere è quello di confrontare su due realtà diverse di distribuzione di vettori energetici una stessa piattaforma hardware e software al fine di dimostrare la fattibilità dei paradigmi di Multi-Utility e di Virtual Utility e nel verificare i vantaggi in termini di ottimizzazione, sicurezza, efficienza gestionale ed energetica. Questo anche in relazione alla possibilità di allargare il mercato oligopolistico dell’energia permettendo la sopravvivenza delle aziende di servizio pubblico di piccola e media dimensione. Infatti, queste ultime, anche se eterogenee (acqua, elettricità, gas, ecc.) e distribuite sul territorio possono, tramite queste tecnologie, essere gestite in maniera coordinata e comportarsi dal punto di vista delle prestazioni economiche come una “utility” di più grande dimensione. Una ulteriore azione, assolutamente rilevante ai fini della buona riuscita del progetto è la promozione del Centro di Ricerca per i Servizi Pubblici e l’Energia e la realizzazione di un Osservatorio Tecnologico presso il Politecnico di Bari con l’obiettivo di: • seguire durante la realizzazione del progetto l’evoluzione tecnologica dei sistemi di automazione e supervisione della Distribuzione di servizi pubblici; • gestire l’attività formativa prevista dal progetto stesso; • favorire la diffusione dei risultati raggiunti al termine del progetto e durante la sua evoluzione presso le aziende di servizio pubblico della Regione Puglia.
Condividi questo sito sui social