Effettua una ricerca
Marco Grande
Ruolo
Ricercatore a tempo determinato - tipo A
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Ingegneria Elettrica e dell'Informazione
Area Scientifica
Area 09 - Ingegneria industriale e dell'informazione
Settore Scientifico Disciplinare
ING-INF/02 - Campi Elettromagnetici
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE7 Systems and Communication Engineering: Electrical, electronic, communication, optical and systems engineering
Settore ERC 3° livello
PE7_5 (Micro and nano) electronic, optoelectronic and photonic components
A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and -easy-to fabricate-graphene-based optical absorbers.
Mesoscopic self-collimation (MSC) in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high Q-factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, that results from a beam focusing effect that stabilizes the cavity even for small beam sizes, resembling the focusing behavior of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness. A Q-factor higher than 10⁴ has been achieved for an optimized 5-period-long mirror cavity. The optimization of the Q-factor and the performances in terms of energy storage, field enhancement, and confinement are detailed.
Condividi questo sito sui social