Effettua una ricerca
Rosella Scrima
Ruolo
Ricercatore
Organizzazione
Università degli Studi di Foggia
Dipartimento
Dipartimento di Medicina Clinica e Sperimentale
Area Scientifica
Area 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/10 - Biochimica
Settore ERC 1° livello
LS - Life sciences
Settore ERC 2° livello
LS3 Cellular and Developmental Biology: Cell biology, cell physiology, signal transduction, organogenesis, developmental genetics, pattern formation in plants and animals, stem cell biology
Settore ERC 3° livello
LS3_6 Organelle biology
Objective: Although the pathogenesis of psoriasis is largely unknown accumulating evidences configure it as an immune-mediated disease determined through cytokines-mediated positive loops between activated lymphocytes subsets and keratinocytes. Mitochondria in addition to their role in the cell bioenergetics are now recognized as a decisional hub in controlling the immunological response. In the present study we compared mitochondria-related functions of PBMC between psoriatic patients and healthy controls. Methods: Freshly isolated PBMC from eleven psoriatic patients and nine healthy controls were subjected to mitochondria-dependent respiratory activity measurements by high-resolution oxymetry and the specific activity of respiratory chain complexes assessed by spectrophotometric assays. Quantitative RT-PCR and immunoblotting were applied to detect the level of selected transcripts and proteins respectively. Results: Respirometric analysis unveiled in patients’ cells a significant three-fold increase of oligomycin- sensitive endogenous mitochondria-driven oxygen consumption, which was traceable back to a specific increased activity of the respiratory chain complex I. Analysis by quantitative RT-PCR of transcription factors regulating the mitochondrial biogenesis did not result in significant changes between patients and control cells and was confirmed by the unaffected expression of the complex I subunits. Treatment of either patients’ or control cells with isoproterenol and IBMX ruled out the involvement of a cAMP-PKA-mediated post-transcriptional modification of the respiratory complex. GRIM19 a pleiotropic protein, involved in the structural and functional stabilization of complex I and in the mitochondrial translocation of STAT3 was significantly up-regulated in patients’ cells. Phosphorylation at S727 of STAT3 was increased in patients’cells, which, in addition, unveiled a shift in the relative expression of the STAT3α/β splisoforms. Conclusion: Altogether the results obtained suggest the occurrence in circulating mononucleate cells from psoriatic patients of an altered activity of complex I likely mediated by up-regulation of GRIM19/STAT3β, which might lead to a chronic activation of T-lymphocytes thereby contributing to the development of psoriasis.
Trisomy of chromosome 21 is associated to congenital heart defects in ∼50% of affected newborns. Transcriptome analysis of hearts from trisomic human foeti demonstrated that genes involved in mitochondrial function are globally downregulated with respect to controls, suggesting an impairment of mitochondrial function. We investigated here the properties of mitochondria in fibroblasts from trisomic foeti with and without cardiac defects. Together with the upregulation of Hsa21 genes and the downregulation of nuclear encoded mitochondrial genes, an abnormal mitochondrial cristae morphology was observed in trisomic samples. Furthermore, impairment of mitochondrial respiratory activity, specific inhibition of complex I, enhanced reactive oxygen species production and increased levels of intra-mitochondrial calcium were demonstrated. Seemingly, mitochondrial dysfunction was more severe in fibroblasts from cardiopathic trisomic foeti that presented a more pronounced pro-oxidative state. The data suggest that an altered bioenergetic background in trisomy 21 foeti might be among the factors responsible for a more severe phenotype. Since the mitochondrial functional alterations might be rescued following pharmacological treatments, these results are of interest in the light of potential therapeutic interventions.
Blood is a fluid connective tissue of human body, where it plays vital functions for the nutrition, defense and well-being of the organism. When circulating in peripheral districts, it is exposed to some physical stresses coming from outside the human body, as electromagnetic fields (EMFs) which can cross the skin. Such fields may interact with biomolecules possibly inducing non thermal-mediated biological effects at the cellular level. In this study, the occurrence of biochemical/biological modifications in human peripheral blood lympho-monocytes exposed in a reverberation chamber for times ranging from 1 to 20 h to EMFs at 1.8 GHz frequency and 200 V/m electric field strength was investigated. Morphological analysis of adherent cells unveiled, in some of these, appearance of an enlarged and deformed shape after EMFs exposure. Raman spectra of the nuclear compartment of cells exposed to EMFs revealed the onset of biochemical modifications, mainly consisting in the reduction of the DNA backbone-linked vibrational modes. Respirometric measurements of mitochondrial activity in intact lympho-monocytes resulted in increase of the resting oxygen consumption rate after 20 h of exposure, which was coupled to a significant increase of the FoF1-ATP synthase-related oxygen consumption. Notably, at lower time-intervals of EMFs exposure (i.e. 5 and 12 h) a large increase of the proton leak-related respiration was observed which, however, recovered at control levels after 20 h exposure. Confocal microscopy analysis of the mitochondrial membrane potential supported the respiratory activities whereas no significant variations in the mitochondrial mass/morphology was observed in EMFs-exposed lympho-monocytes. Finally, altered redox homeostasis was shown in EMFs-exposed lympho-monocytes, which progressed differently in nucleated cellular subsets. This results suggest the occurrence of adaptive mechanisms put in action, likely via redox signaling, to compensate for early impairments of the oxidative phosphorylation system caused by exposure to EMFs. Overall the data presented warn for health safety of people involved in long-term exposure to electromagnetic fields, although further studies are required to pinpoint the leukocyte cellular subset(s) selectively targeted by the EMFs action and the mechanisms by which it is achieved.
Oxidative metabolism and redox signaling prove to play a decisional role in controlling adult hematopoietic stem/progenitor cells (HSPCs) biology. However, HSPCs reside in a hypoxic bone marrow microenvironment raising the question of how oxygen metabolism might be ensued. In this study, we provide for the first time novel functional and molecular evidences that human HSPCs express myoglobin (Mb) at level comparable with that of a muscle-derived cell line. Optical spectroscopy and oxymetry enabled to estimate an O2-sensitive heme-containing protein content of approximately 180 ng globin per 10(6) HSPC and a P50 of approximately 3 µM O2. Noticeably, expression of Mb mainly occurs through a HIF-1-induced alternative transcript (Mb-V/Mb-N = 35 ± 15, p < .01). A search for other Mb-related globins unveiled significant expression of neuroglobin (Ngb) but not of cytoglobin. Confocal microscopy immune detection of Mb in HSPCs strikingly revealed nuclear localization in cell subsets expressing high level of CD34 (nuclear/cytoplasmic Mb ratios 1.40 ± 0.02 vs. 0.85 ± 0.05, p < .01) whereas Ngb was homogeneously distributed in all the HSPC population. Dual-color fluorescence flow cytometry indicated that while the Mb content was homogeneously distributed in all the HSPC subsets that of Ngb was twofold higher in more immature HSPC. Moreover, we show that HSPCs exhibit a hypoxic nitrite reductase activity releasing NO consistent with described noncanonical functions of globins. Our finding extends the notion that Mb and Ngb can be expressed in nonmuscle and non-neural contexts, respectively, and is suggestive of a differential role of Mb in HSPC in controlling oxidative metabolism at different stages of commitment.
Adult haematopoietic stem/progenitor cells (HSPCs) constitute the lifespan reserve for the generation of all the cellular lineages in the blood. Although massive progress in identifying the cluster of master genes controlling self-renewal and multipotency has been achieved in the past decade, some aspects of the physiology of HSPCs still need to be clarified. In particular, there is growing interest in the metabolic profile of HSPCs in view of their emerging role as determinants of cell fate. Indeed, stem cells and progenitors have distinct metabolic profiles, and the transition from stem to progenitor cell corresponds to a critical metabolic change, from glycolysis to oxidative phosphorylation. In this review, we summarize evidence, reported in the literature and provided by our group, highlighting the peculiar ability of HSPCs to adapt their mitochondrial oxidative/bioenergetic metabolism to survive in the hypoxic microenvironment of the endoblastic niche and to exploit redox signalling in controlling the balance between quiescence versus active cycling and differentiation. Especial prominence is given to the interplay between hypoxia inducible factor-1, globins and NADPH oxidases in managing the mitochondrial dioxygen-related metabolism and biogenesis in HSPCs under different ambient conditions. A mechanistic model is proposed whereby 'mitochondrial differentiation' is a prerequisite in uncommitted stem cells, paving the way for growth/differentiation factor-dependent processes. Advancing the understanding of stem cell metabolism will, hopefully, help to (i) improve efforts to maintain, expand and manipulate HSPCs ex vivo and realize their potential therapeutic benefits in regenerative medicine; (ii) reprogramme somatic cells to generate stem cells; and (iii) eliminate, selectively, malignant stem cells.
Condividi questo sito sui social