Topological and volumetric posture recognition with active vision sensor in AAL contexts
Abstract
The paper presents an active vision system for human posture recognition, which is an important function of any assisted living system, suitable to be employed in indoor environments. Both hardware and software architectures are defined in order to meet constraints typically imposed by AAL (Ambient Assisted Living) contexts such as compactness, low-power consumption, installation simplicity, privacy preserving and non-intrusiveness. Two different approaches for feature extraction (topological and volumetric) are discussed and the related discrimination capabilities evaluated by using a statistical learning methodology. Experimental results show the soundness of the presented active vision-based solution in order to classify four main human postures (standing, sitting, bent, lying) with an adequate detail level for the specific AAL application. © 2011 IEEE.
Autore Pugliese
Tutti gli autori
-
Leone A.; Diraco G.; Siciliano P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
Non Disponibile
ISBN
9781457706226
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social