The Generalized Schur Algorithm and Some Applications
Abstract
The generalized Schur algorithm is a powerful tool allowing to compute classicaldecompositions of matrices, such as the QR and LU factorizations. When applied to matrices withparticular structures, the generalized Schur algorithm computes these factorizations with a complexityof one order of magnitude less than that of classical algorithms based on Householder or elementarytransformations. In this manuscript, we describe the main features of the generalized Schur algorithm.We show that it helps to prove some theoretical properties of the R factor of the QR factorization ofsome structured matrices, such as symmetric positive definite Toeplitz and Sylvester matrices, thatcan hardly be proven using classical linear algebra tools. Moreover, we propose a fast implementationof the generalized Schur algorithm for computing the rank of Sylvester matrices, arising in a numberof applications. Finally, we propose a generalized Schur based algorithm for computing the -spaceof polynomial matrices.
Autore Pugliese
Tutti gli autori
-
Laudadio T.; Mastronardi N.; Van Dooren P.
Titolo volume/Rivista
Axioms
Anno di pubblicazione
2018
ISSN
2075-1680
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social