Tailoring chiro-optical effects by helical nanowire arrangement

Abstract

In this work, we experimentally investigate the chiro-optical properties of 3D metallic helical systems at optical frequencies. Both single and triple-nanowire geometries have been studied. In particular, we found that in single-helical nanostructures, the enhancement of chiro-optical effects achievable by geometrical design is limited, especially with respect to the operation wavelength and the circular polarization conversion purity. Conversely, in the triple-helical nanowire configuration, the dominant interaction is the coupling among the intertwined coaxial helices which is driven by a symmetric spatial arrangement. Consequently, a general improvement in the g-factor, extinction ratio and signal-to-noise-ratio is achieved in a broad spectral range. Moreover, while in single-helical nanowires a mixed linear and circular birefringence results in an optical activity strongly dependent on the sample orientation and wavelength, in the triple-helical nanowire configuration, the obtained purely circular birefringence leads to a large optical activity up to 8°, independent of the sample angle, and extending in a broad band of 500 nm in the visible range. These results demonstrate a strong correlation between the configurational internal interactions and the chiral feature designation, which can be effectively exploited for nanoscale chiral device engineering.


Tutti gli autori

  • Esposito M.; Tasco V.; Todisco F.; Benedetti A.; Tarantini I.; Cuscuna M.; Dominici L.; De Giorgi M.; Passaseo A.

Titolo volume/Rivista

Nanoscale


Anno di pubblicazione

2015

ISSN

2040-3364

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile