Splitting and composition methods for explicit time-dependence in separable dynamical systems
Abstract
We consider splitting methods for the numerical integration of separable non-autonomous differential equations. In recent years, splitting methods have been extensively used as geometric numerical integrators showing excellent performances (both qualitatively and quantitatively) when applied on many problems. They are designed for autonomous separable systems, and a substantial number of methods tailored for different structures of the equations have recently appeared. Splitting methods have also been used for separable non-autonomous problems either by solving each non-autonomous part separately or after each vector field is frozen properly. We show that both procedures correspond to introducing the time as two new coordinates. We generalize these results by considering the time as one or more further coordinates which can be integrated following either of the previous two techniques. We show that the performance as well as the order of the final method can strongly depend on the particular choice. We present a simple analysis which, in many relevant cases, allows one to choose the most appropriate split to retain the high performance the methods show on the autonomous problems. This technique is applied to different problems and its performance is illustrated for several numerical examples.
Autore Pugliese
Tutti gli autori
-
Blanes S.; Diele F.; Marangi C.; Ragni S.
Titolo volume/Rivista
Journal of computational and applied mathematics
Anno di pubblicazione
2010
ISSN
0377-0427
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social