Spatial and velocity statistics of inertial particles in turbulent flows

Abstract

Spatial and velocity statistics of heavy point-like particles in incompressible, homogeneous, and isotropic three-dimensional turbulence is studied by means of direct numerical simulations at two values of the Taylor-scale Reynolds number Re-lambda similar to 200 and Re-lambda similar to 400, corresponding to resolutions of 512(3) and 2048(3) grid points, respectively. Particles Stokes number values range from St approximate to 0.2 to 70. Stationary small-scale particle distribution is shown to display a singular -multifractal- measure, characterized by a set of generalized fractal dimensions with a strong sensitivity on the Stokes number and a possible, small Reynolds number dependency. Velocity increments between two inertial particles depend on the relative weight between smooth events - where particle velocity is approximately the same of the fluid velocity-, and caustic contributions - when two close particles have very different velocities. The latter events lead to a non-differentiable small-scale behaviour for the relative velocity. The relative weight of these two contributions changes at varying the importance of inertia. We show that moments of the velocity difference display a quasi bi-fractal-behavior and that the scaling properties of velocity increments for not too small Stokes number are in good agreement with a recent theoretical prediction made by K. Gustavsson and B. Mehlig arXiv:1012.1789v1 [physics.fludyn], connecting the saturation of velocity scaling exponents with the fractal dimension of particle clustering.


Tutti gli autori

  • J. Bec ; L. Biferale ; M. Cencini ; A.S. Lanotte ; F. Toschi

Titolo volume/Rivista

Journal of physics. Conference series


Anno di pubblicazione

2011

ISSN

1742-6588

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile