Semantic matchmaking for Kinect-based posture and gesture recognition
Abstract
Innovative analysis methods applied to data extracted by o®-the-shelf peripherals can provideuseful results in activity recognition without requiring large computational resources. In thispaper a framework is proposed for automated posture and gesture recognition, exploiting depthdata provided by a commercial tracking device. The detection problem is handled as a semanticbasedresource discovery. A general data model and the corresponding ontology provide theformal underpinning for posture and gesture annotation via standard Semantic Web languages.Hence, a logic-based matchmaking, exploiting non-standard inference services, allows to: (i) detectpostures via on-the-°y comparison of the annotations with standard posture descriptionsstored as instances of a proper Knowledge Base; (ii) compare subsequent postures in order torecognize gestures. The framework has been implemented in a prototypical tool and experimentaltests have been carried out on a reference dataset. Preliminary results indicate the feasibility of theproposed approach.
Autore Pugliese
Tutti gli autori
-
M. Ruta; F. Scioscia; M. di Summa; S. Ieva; E. Di Sciascio; M. Sacco
Titolo volume/Rivista
International Journal of Semantic Computing
Anno di pubblicazione
2014
ISSN
1793-7108
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social