SCALABLE ANALYSIS AND RETRIEVAL OF POLARIMETRIC SAR DATA ON ELASTIC COMPUTING CLOUDS
Abstract
Earth Observation (EO) mining systems aim at supportingefficient access and exploration of large volumes of imageproducts. In this work, we address the problem ofcontent-based image retrieval via example-based queriesfrom Petabyte-scale EO data archives. To this end, wepropose an interactive data mining system that relies ondistributing unsupervised ingestion processes onto virtualmachine instances in elastic, on-demand computinginfrastructures that also support archive-scale contentindexing via a "big data" analytics cluster-computingframework. In particular, we focus on the analysis ofpolarimetric SAR data, for which target decompositiontheorems have proved fundamental in discovering patterns indata and in characterizing the ground scattering properties.Experiments are carried out on the publicly availableUAVSAR full polarimetric data archive, whose basicproducts amount to about 0.64 PB of storage. We report theresults of the tests performed by using a public IaaS. Theobtained measures appear promising for data mapping andinformation retrieval applications.
Autore Pugliese
Tutti gli autori
-
L. Mascolo; M. Quartulli; P. Guccione; G. Nico; I.G. Olaizola
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2014
ISSN
Non Disponibile
ISBN
978-92-79-43252-1
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social