SB3A splitting for approximation of invariants in time-dependent Hamiltonian systems

Abstract

Most physical phenomena are described by time-dependent Hamiltonian systems with qualitative features that should be preserved by numerical integrators used for approximating their dynamics. The initial energy of the system together with the energy added or subtracted by the outside forces, represent a conserved quantity of the motion. For a class of time-dependent Hamiltonian systems [8] this invariant can be defined by means of an auxiliary function whose dynamics has to be integrated simultaneously with the system's equations. We propose splitting procedures featured by a SB3A property that allows to construct composition methods with a reduced number of determining order equations and to provide the same high accuracy for both the dynamics and the preservation of the invariant quantity.


Tutti gli autori

  • Diele F.; Marangi C.; Ragni S.

Titolo volume/Rivista

Applied mathematics and computation


Anno di pubblicazione

2010

ISSN

0096-3003

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile