SB3A splitting for approximation of invariants in time-dependent Hamiltonian systems
Abstract
Most physical phenomena are described by time-dependent Hamiltonian systems with qualitative features that should be preserved by numerical integrators used for approximating their dynamics. The initial energy of the system together with the energy added or subtracted by the outside forces, represent a conserved quantity of the motion. For a class of time-dependent Hamiltonian systems [8] this invariant can be defined by means of an auxiliary function whose dynamics has to be integrated simultaneously with the system's equations. We propose splitting procedures featured by a SB3A property that allows to construct composition methods with a reduced number of determining order equations and to provide the same high accuracy for both the dynamics and the preservation of the invariant quantity.
Autore Pugliese
Tutti gli autori
-
Diele F.; Marangi C.; Ragni S.
Titolo volume/Rivista
Applied mathematics and computation
Anno di pubblicazione
2010
ISSN
0096-3003
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social