Relevance of coordinate and particle-number scaling in density-functional theory
Abstract
We discuss a ?-dependent family of electronic density scalings of the form n?(r)=?3?+1 n(??r) in the context of density functional theory. In particular, we consider the following special cases: the Thomas-Fermi scaling (?=1/3 and ?>>1), which is crucial for the semiclassical theory of neutral atoms; the uniform-electron-gas scaling (?=-1/3 and ?>>1), that is important in the semiclassical theory of metallic clusters; the homogeneous density scaling (?=0) which can be related to the self-interaction problem in density functional theory when ?<=1; the fractional scaling (?=1 and ?<=1), that is important for atom and molecule fragmentation; and the strong-correlation scaling (?=-1 and ?>>1) that is important to describe the strong correlation limit. The results of our work provide evidence for the importance of this family of scalings in semiclassical and quantum theory of electronic systems, and indicate that these scaling properties must be considered as important constraints in the construction of new approximate density functionals. We also show, using the uniform-electron-gas scaling, that the curvature energy of metallic clusters is related to the second-order gradient expansion of kinetic and exchange-correlation energies.
Autore Pugliese
Tutti gli autori
-
E. Fabiano; L. A. Constantin
Titolo volume/Rivista
Physical review. A
Anno di pubblicazione
2013
ISSN
1050-2947
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social