Recent trends in gesture recognition: how depth data has improved classical approaches

Abstract

This paper analyzes with a new perspective the recent state of-the-art on gesture recognition approaches that exploit both RGB and depth data (RGB-D images). The most relevant papers have been analyzed to point out which features and classifiers best work with depth data, if these fundamentals are specifically designed to process RGB-D images and, above all, how depth information can improve gesture recognition beyond the limit of standard approaches based on solely color images. Papers have been deeply reviewed finding the relation between gesture complexity and features/methodologies suitability. Different types of gestures are discussed, focusing attention on the kind of datasets (public or private) used to compare results, in order to understand weather they provide a good representation of actual challenging problems, such as: gesture segmentation, idle gesture recognition, and length gesture invariance. Finally the paper discusses on the current open problems and highlights the future directions of research in the field of processing of RGB-D data for gesture recognition.


Tutti gli autori

  • T. D'Orazio ; R. Marani; V. Renò; G. Cicirelli

Titolo volume/Rivista

Image and vision computing


Anno di pubblicazione

2016

ISSN

0262-8856

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile