Real-time tracking of a tennis ball by combining 3D data and domain knowledge

Abstract

Computer vision is steadily gaining importance in many research fields, as its applications expand from traditional fields situation analysis and scene understanding in video surveillance to other scenarios. The sportive context can represent a perfect test-bed for many machine vision algorithms because of the large availability of visual data brought by wide spread cameras on a relatively high number of courts. In this paper we introduce a tennis ball detection and tracking method that exploits domain knowledge to effectively recognize ball positions and trajectories. A peculiarity of this approach is that it starts from a sparse but cluttered point cloud that evolves over time, basically working on 3D samples only. Experiments on real data demonstrate the effectiveness of the algorithm in terms of tracking accuracy and path following capability.


Tutti gli autori

  • Renò V.; Mosca N.; Nitti M.; Guaragnella C.; D'Orazio T.; Stella E.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2016

ISSN

Non Disponibile

ISBN

9781509057276


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile