Rank-revealing decomposition of symmetric indefinite matrices via block anti-triangular factorization
Abstract
We present an algorithm for computing a symmetric rank revealing decomposition of a symmetric n x n matrix A, as defined in the work of Hansen & Yalamov [9]: we factorize the original matrix into a product A = QMQ(T), with Q orthogonal and M symmetric and in block form, with one of the blocks containing the dominant information of A, such as its largest eigenvalues. Moreover, the matrix M is constructed in a form that is easy to update when adding to A a symmetric rank-one matrix or when appending a row and, symmetrically, a column to A: the cost of such an updating is O(n(2)) floating point operations.
Autore Pugliese
Tutti gli autori
-
Mastronardi N.; Van Dooren P.
Titolo volume/Rivista
Linear algebra and its applications
Anno di pubblicazione
2016
ISSN
0024-3795
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social