Range imaging for fall detection and posture analysis in ambient assisted living applications
Abstract
The chapter presents an automated monitoring system for the detection of dangerous events of elderly people (such as falls) in AAL applications. In order to provide a self-contained technology solution not requiring neither the environment rearrangement, nor the presence of specialized staff, nor a priori information about elderly characteristics/habitude, the focus is placed on the classification of human postures and the detection of related adverse events. The people is detected through a non-wearable device (a TOF camera), overcoming the limitations of the wearable approaches (accelerometers, gyroscopes, etc.) for human monitoring (the devices are prone to be incorrectly worn or forgotten). The system shows high performances in terms of efficiency and reliability on a large real dataset of falls acquired in different conditions. The posture recognition is carried out by using a topological approach on the 3D points cloud. Experimental results validate the soundness of the posture recognition scheme. © 2011 Springer Science+Business Media B.V.
Autore Pugliese
Tutti gli autori
-
Leone A.; Diraco G.; Siciliano P.
Titolo volume/Rivista
Lecture notes in electrical engineering
Anno di pubblicazione
2011
ISSN
1876-1100
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social