Randomized circle detection with isophotes curvature analysis
Abstract
Circle detection is a critical issue in image analysis and object detection. Although Hough transform based solvers are largely used, randomized approaches, based on the iterative sampling of the edge pixels,are object of research in order to provide solutions less computationally expensive. This work presents a randomized iterative work-flow, which exploits geometrical properties of isophotes in the image to select the most meaningful edge pixels and to classify them in subsets of equal isophote curvature. The analysis of candidate circles is then performed with a kernel density estimation based voting strategy, followed by a refinement algorithm based on linear error compensation. The method has been applied to a set of real images on which it has also been compared with two leading state of the art approaches and Hough transform based solutions. The achieved results show how, discarding u pto 57% of unnecessary edge pixels, it is able to accurately detect circles with in a limited number of iterations, maintaining a sub-pixel accuracy even in the presence of high level of noise.
Autore Pugliese
Tutti gli autori
-
T. De Marco; D. Cazzato; M. Leo; C. Distante
Titolo volume/Rivista
Pattern recognition
Anno di pubblicazione
2015
ISSN
0031-3203
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social