Randomized circle detection with isophotes curvature analysis

Abstract

Circle detection is a critical issue in image analysis and object detection. Although Hough transform based solvers are largely used, randomized approaches, based on the iterative sampling of the edge pixels,are object of research in order to provide solutions less computationally expensive. This work presents a randomized iterative work-flow, which exploits geometrical properties of isophotes in the image to select the most meaningful edge pixels and to classify them in subsets of equal isophote curvature. The analysis of candidate circles is then performed with a kernel density estimation based voting strategy, followed by a refinement algorithm based on linear error compensation. The method has been applied to a set of real images on which it has also been compared with two leading state of the art approaches and Hough transform based solutions. The achieved results show how, discarding u pto 57% of unnecessary edge pixels, it is able to accurately detect circles with in a limited number of iterations, maintaining a sub-pixel accuracy even in the presence of high level of noise.


Tutti gli autori

  • T. De Marco; D. Cazzato; M. Leo; C. Distante

Titolo volume/Rivista

Pattern recognition


Anno di pubblicazione

2015

ISSN

0031-3203

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile