Potential of Electrospun Poly(3-hydroxybutyrate)/Collagen Blends for Tissue Engineering Applications
Abstract
In this work, tunable nonwoven mats based on poly(3-hydroxybutyrate) (PHB) and type I collagen (Coll) were successfully produced by electrospinning. The PHB/Coll weight ratio (fixed at 100/0, 70/30, and 50/50, resp.) was found to control the morphological, thermal, mechanical, and degradation properties of the mats. Increasing collagen amounts led to larger diameters of the fibers (in the approximate range 600-900 nm), while delaying their thermal decomposition (from 245 degrees C to 262 degrees C). Collagen also accelerated the hydrolytic degradation of the mats upon incubation in aqueous medium at 37 degrees C for 23 days (with final weight losses of 1%, 15%, and 23% for 100/0, 70/30, and 50/50 samples, resp.), as a result of increased mat wettability and reduced PHB crystallinity. Interestingly, 70/30 meshes were the ones displaying the lowest stiffness (similar to 116 MPa; p < 0 05 versus 100/0 and 50/50 meshes), while 50/50 samples had an elastic modulus comparable to that of 100/0 ones (similar to 250 MPa), likely due to enhanced physical crosslinking of the collagen chains, at least at high protein amounts. All substrates were also found to allow for good viability and proliferation of murine fibroblasts, up to 6 days of culture. Collectively, the results evidenced the potential of as-spun PHB/Coll meshes for tissue engineering applications.
Autore Pugliese
Tutti gli autori
-
Salvatore L.; Carofiglio V.E.; Stufano P.; Bonfrate V.; Calo E.; Scarlino S.; Nitti P.; Centrone D.; Cascione M.; Leporatti S.; Sannino A.; Demitri C.; Madaghiele M.
Titolo volume/Rivista
Journal of healthcare engineering
Anno di pubblicazione
2018
ISSN
2040-2295
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social