Parallel selective sampling method for imbalanced and large data classification
Abstract
Several applications aim to identify rare events from very large data sets. Classification algorithms may present great limitations on large data sets and show a performance degradation due to class imbalance. Many solutions have been presented in literature to deal with the problem of huge amount of data or imbalancing separately. In this paper we assessed the performances of a novel method, Parallel Selective Sampling (PSS), able to select data from the majority class to reduce imbalance in large data sets. PSS was combined with the Support Vector Machine (SVM) classification. PSS-SVM showed excellent performances on synthetic data sets, much better than SVM. Moreover, we showed that on real data sets PSS-SVM classifiers had performances slightly better than those of SVM and RUSBoost classifiers with reduced processing times. In fact, the proposed strategy was conceived and designed for parallel and distributed computing. In conclusion, PSS-SVM is a valuable alternative to SVM and RUSBoost for the problem of classification by huge and imbalanced data, due to its accurate statistical predictions and low computational complexity.
Autore Pugliese
Tutti gli autori
-
D'Addabbo A.; Maglietta R.
Titolo volume/Rivista
Pattern recognition letters
Anno di pubblicazione
2015
ISSN
0167-8655
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social