On Lagrangian single-particle statistics
Abstract
In turbulence, ideas of energy cascade and energy flux, substantiated by the exactKolmogorov relation, lead to the determination of scaling laws for the velocity spatialcorrelation function. Here we ask whether similar ideas can be applied to temporalcorrelations. We critically review the relevant theoretical and experimental resultsconcerning the velocity statistics of a single fluid particle in the inertial range of sta-tistically homogeneous, stationary and isotropic turbulence. We stress that the widelyused relations for the second structure function, D2(t) ? ?[v(t) - v(0)]2? ? ?t, re-lies on dimensional arguments only: no relation of D2(t) to the energy cascade isknown, neither in two- nor in three-dimensional turbulence. State of the art experimental and numerical results demonstrate that at high Reynolds numbers, the derivative d D2(t )/dt has a finite non-zero slope starting from T? The analysis of the acceleration spectrum \Phi_A(?) indicates a possible small correction with respect to the dimensional expectation \Phi_A(?) ~ ?_0 but present data are unable to discriminate between anomalous scaling and finite Reynolds effects in the second order moment of velocity Lagrangian statistics.
Autore Pugliese
Tutti gli autori
-
G. Falkovich; H. Xu; A. Pumir; E. Bodenschatz; L. Biferale; G. Boffetta; A. S. Lanotte ; F. Toschi
Titolo volume/Rivista
Physics of fluids
Anno di pubblicazione
2012
ISSN
1070-6631
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social