On Lagrangian single-particle statistics

Abstract

In turbulence, ideas of energy cascade and energy flux, substantiated by the exactKolmogorov relation, lead to the determination of scaling laws for the velocity spatialcorrelation function. Here we ask whether similar ideas can be applied to temporalcorrelations. We critically review the relevant theoretical and experimental resultsconcerning the velocity statistics of a single fluid particle in the inertial range of sta-tistically homogeneous, stationary and isotropic turbulence. We stress that the widelyused relations for the second structure function, D2(t) ? ?[v(t) - v(0)]2? ? ?t, re-lies on dimensional arguments only: no relation of D2(t) to the energy cascade isknown, neither in two- nor in three-dimensional turbulence. State of the art experimental and numerical results demonstrate that at high Reynolds numbers, the derivative d D2(t )/dt has a finite non-zero slope starting from T? The analysis of the acceleration spectrum \Phi_A(?) indicates a possible small correction with respect to the dimensional expectation \Phi_A(?) ~ ?_0 but present data are unable to discriminate between anomalous scaling and finite Reynolds effects in the second order moment of velocity Lagrangian statistics.


Tutti gli autori

  • G. Falkovich; H. Xu; A. Pumir; E. Bodenschatz; L. Biferale; G. Boffetta; A. S. Lanotte ; F. Toschi

Titolo volume/Rivista

Physics of fluids


Anno di pubblicazione

2012

ISSN

1070-6631

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile