Numerical analysis of a first-order in time implicit-symplectic scheme for predator-prey systems

Abstract

The numerical solution of reaction-diffusion systems modelling predator-prey dynamics using implicit-symplectic (IMSP) schemes is relatively new. When applied to problems with chaotic dynamics they perform well, both in terms of computational effort and accuracy. However, until the current paper, a rigorous numerical analysis was lacking. We analyse the semi-discrete in time approximations of a first-order IMSP scheme applied to spatially extended predator-prey systems. We rigorously establish semi-discrete a priori bounds that guarantee positive and stable solutions, and prove an optimal a priori error estimate. This analysis is an improvement on previous theoretical results using standard implicit-explicit (IMEX) schemes. The theoretical results are illustrated via numerical experiments in one and two space dimensions using fully-discrete finite element approximations.


Autore Pugliese

Tutti gli autori

  • F. Diele; M. Garvie; C. Trenchea

Titolo volume/Rivista

Computers & mathematics with applications


Anno di pubblicazione

2017

ISSN

0898-1221

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile