Multidimensional analysis of EEG features using advanced spectral estimates for diagnosis accuracy
Abstract
Electroencephalogram (EEG) is a source ofinteresting information if one is able to extract them accordingto appropriate techniques. The conditions of individual underEEG test is a key issue. In general, EEG feature extraction canbe associated to other information like Electrocardiogram(ECG), ergospirometry and electromyogram (EMG). However,in some cases, a multidimensional representation is used;bispectrum is an example of such a representation. HOS (highorder statistics), for instance, include the bispectrum and thetrispectrum (third and fourth order statistics, respectively).Advanced estimate spectral analysis can reveal newinformation encompassed in EEG signals. That is the reasonthe author propose an algorithm based on DSD (DecimatedSignal Diagonalization) that is able of processing exponentiallydumped signals like those that regard EEG features. Theversion proposed here is a multidimensional one.
Autore Pugliese
Tutti gli autori
-
Lay-Ekuakille A.; Vergallo P.; Griffo G.; Urooj S.; Bhateja V.; Conversano F.; Casciaro S.; Trabacca A.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social