Multidimensional analysis of EEG features using advanced spectral estimates for diagnosis accuracy

Abstract

Electroencephalogram (EEG) is a source ofinteresting information if one is able to extract them accordingto appropriate techniques. The conditions of individual underEEG test is a key issue. In general, EEG feature extraction canbe associated to other information like Electrocardiogram(ECG), ergospirometry and electromyogram (EMG). However,in some cases, a multidimensional representation is used;bispectrum is an example of such a representation. HOS (highorder statistics), for instance, include the bispectrum and thetrispectrum (third and fourth order statistics, respectively).Advanced estimate spectral analysis can reveal newinformation encompassed in EEG signals. That is the reasonthe author propose an algorithm based on DSD (DecimatedSignal Diagonalization) that is able of processing exponentiallydumped signals like those that regard EEG features. Theversion proposed here is a multidimensional one.


Tutti gli autori

  • Lay-Ekuakille A.; Vergallo P.; Griffo G.; Urooj S.; Bhateja V.; Conversano F.; Casciaro S.; Trabacca A.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile