Monitoring of indoor environments by change detection in point clouds
Abstract
This paper describes a complete method for monitoring indoor environments. Three-dimensional (3D) point clouds are first acquired from the environment under investigation by means of a laser range scanner in order to obtain several 3D models to be compared. Input datasets are thus registered each other exploiting a reliable variant of the iterative closest point algorithm (ICP) assisted by the use of deletion masks. These terms work in cooperation with the resampling of the model surfaces to reduce significantly the errors in the estimation of the registration parameters. Once datasets are registered, deformation maps are displayed to help the user to detect changes within the environment. Deletion masks are again used to filter measurement artifacts from the comparison, thus highlighting only the actual alterations of the environment. Several experiments are performed for the analysis of an indoor environment, proving the capability of the proposed method to reliably estimate the presence of alterations.
Autore Pugliese
Tutti gli autori
-
Marani R.; Nitti M.; Stella E.; D'Orazio T.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2016
ISSN
Non Disponibile
ISBN
978-1-5090-2369-1
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social