Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultra-Low Thermal Resistances
Abstract
As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix - which are prepared by chemisorption coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m.K), which are very high considering their relatively low elastic modulus values on the order of 21.2 to 28.5 GPa. The synergistic combination of these properties lead to the ultra-low total thermal resistivity values in the range of 0.38 to 0.56 mm2.K/W for a typical bondline thickness of 30-50 µm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally-induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.
Autore Pugliese
Tutti gli autori
-
C. Yegin; N. Nagabandi; X. Feng; C. King; M. Catalano; J. Kyun Oh; A. Talib; E.A. Scholar; S.V. Verkhoturov; T. Cagin; A.V. Sokolov; M.J. Kim; K. Matin; S. Narumanchi; M. Akbulut
Titolo volume/Rivista
ACS applied materials & interfaces
Anno di pubblicazione
2017
ISSN
1944-8252
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social