Mass-transport driven growth dynamics of AlGaAs shells deposited around dense GaAs nanowires by metalorganic vapor phase epitaxy

Abstract

Group III-V compound semiconductor nanowires with radial modulation of the materials composition and/or doping in the form of core-shell and core-multishell nanowire heterostructures show promise as novel and high-performance nano-scale light emitting diodes, lasers, photodetectors and solar cells. Strict control over the growth of such radially heterostructured nanowires is, however, necessary. We report the experimental dependence of AlGaAs shell growth by metalorganic vapor phase epitaxy (MOVPE) around free-standing Au-catalysed GaAs nanowires on the relevant sizes and densities of the nanostructures. A model based on (i) the vapor mass transport of group III species, and (ii) perfect conformality between the nanowires and the substrate of AlGaAs deposition is proposed and validated, describing the observed MOVPE growth dynamics of the shell material around dense ensembles of GaAs nanowires. We predict the complex (non-linear) dependence of the shell growth rate on the initial GaAs nanowire diameters (i.e., initial Au catalyst nanoparticle size), heights, local densities on the substrate, and deposition time, which is in very good agreement with experimental data; in particular, a monotonic decrease of AlGaAs shell thickness is expected and observed with increasing nanowire density.


Autore Pugliese

Tutti gli autori

  • Miccoli I.; Prete P.; Lovergine N.

Titolo volume/Rivista

CrystEngComm


Anno di pubblicazione

2015

ISSN

1466-8033

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile