Lagrangian Statistics for Navier-Stokes Turbulence under Fourier-mode reduction: Fractal and Homogeneous Decimations

Abstract

We study small-scale and high-frequency turbulent fluctuations in three-dimensional flows under Fourier-mode reduction. The Navier-Stokes equations are evolved on a restricted set of modes,obtained as a projection on a fractal or homogeneous Fourier set. We find a strong sensitivity (reduction) of the high-frequency variability of the Lagrangian velocity fluctuations on the degree ofmode decimation, similarly to what is already reported for Eulerian statistics. This is quantified by atendency towards a quasi-Gaussian statistics, i.e., to a reduction of intermittency, at all scales andfrequencies. This can be attributed to a strong depletion of vortex filaments and of the vortex stretching mechanism. Nevertheless, we found that Eulerian and Lagrangian ensembles are stillconnected by a dimensional bridge-relation which is independent of the degree of Fourier-mode decimation.


Tutti gli autori

  • M. Buzzicotti ; A. Bhatnagar ; L. Biferale ; A.S. Lanotte ; S.S. Ray

Titolo volume/Rivista

New journal of physics


Anno di pubblicazione

2016

ISSN

1367-2630

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile