Lagrangian Statistics for Navier-Stokes Turbulence under Fourier-mode reduction: Fractal and Homogeneous Decimations
Abstract
We study small-scale and high-frequency turbulent fluctuations in three-dimensional flows under Fourier-mode reduction. The Navier-Stokes equations are evolved on a restricted set of modes,obtained as a projection on a fractal or homogeneous Fourier set. We find a strong sensitivity (reduction) of the high-frequency variability of the Lagrangian velocity fluctuations on the degree ofmode decimation, similarly to what is already reported for Eulerian statistics. This is quantified by atendency towards a quasi-Gaussian statistics, i.e., to a reduction of intermittency, at all scales andfrequencies. This can be attributed to a strong depletion of vortex filaments and of the vortex stretching mechanism. Nevertheless, we found that Eulerian and Lagrangian ensembles are stillconnected by a dimensional bridge-relation which is independent of the degree of Fourier-mode decimation.
Autore Pugliese
Tutti gli autori
-
M. Buzzicotti ; A. Bhatnagar ; L. Biferale ; A.S. Lanotte ; S.S. Ray
Titolo volume/Rivista
New journal of physics
Anno di pubblicazione
2016
ISSN
1367-2630
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social