Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsäcker behavior and applications to density functionals
Abstract
We show that the Kohn-Sham positive-definite kinetic energy (KE) density significantly differs from the von Weizsäcker (VW) one at the nuclear cusp as well as in the asymptotic region. At the nuclear cusp, the VW functional is shown to be linear, and the contribution of p-type orbitals to the KE density is theoretically derived and numerically demonstrated in the limit of infinite nuclear charge as well in the semiclassical limit of neutral large atoms. In the latter case, it reaches 12% of the KE density. In the asymptotic region we find new exact constraints for meta-generalized gradient approximation (meta-GGA) exchange functionals: with an exchange enhancement factor proportional to ?--?, where ? is the common meta-GGA ingredient, both the exchange energy density and the potential are proportional to the exact ones. In addition, this describes exactly the large-gradient limit of quasi-two-dimensional systems.
Autore Pugliese
Tutti gli autori
-
F. Della Sala; E. Fabiano; L. A. Constantin
Titolo volume/Rivista
Physical review. B, Solid state
Anno di pubblicazione
2015
ISSN
0556-2805
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social