Gross parameters prediction of a granular-attached biomass reactor by means of multi-objective genetic-designed artificial neural networks: touristic pressure management case
Abstract
The Artificial Neural Networks by Multi-objectiveGenetic Algorithms (ANN-MOGA) model has been appliedto gross parameters data of a Sequencing Batch BiofilterGranular Reactor (SBBGR) with the aim of providing an effectivetool for predicting the fluctuations coming from touristicpressure. Six independent multivariate models, whichwere able to predict the dynamics of raw chemical oxygendemand (COD), soluble chemical oxygen demand (CODsol),total suspended solid (TSS), total nitrogen (TN), ammoniacalnitrogen (N-NH4+) and total phosphorus (Ptot), were developed.The ANN-MOGA software application has shown to besuitable for addressing the SBBGR reactor modelling. The R2found are very good, with values equal to 0.94, 0.92, 0.88,0.88, 0.98 and 0.91 for COD, CODsol, N-NH4+, TN, Ptot andTSS, respectively. A comparison was made between SBBGRand traditional activated sludge treatment plant modelling.The results showed the better performance of the ANNMOGAapplication with respect to a wide selection of scientificliterature cases.
Autore Pugliese
Tutti gli autori
-
Del Moro G.; Barca E.; de Sanctis M.; Mascolo G.; Di Iaconi C.
Titolo volume/Rivista
Environmental science and pollution research international
Anno di pubblicazione
2015
ISSN
0944-1344
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social