Geodesic-based human posture analysis by using a single 3D TOF camera
Abstract
In this paper an algorithmic framework for posture analysis using a single view 3D TOF camera is presented. The 3D human posture parameters are recovered automatically from range data without the usage of body markers. A topological approach is investigated in order to define descriptors suitable to estimate location of body parts and orientation of body articulations. Two Morse function are exploited, the first one provides an Euclidean distance mapping helpful to deal with body self-occlusions. The second Morse function is based on geodesic distance and provides an extended Discrete Reeb Graph description of the main body parts that are head, torso, arms and legs. Geodesic distance function exhibits the property of invariance under isometric transformations that typically occur when the human body changes its posture. The geodesic map of the body is obtained with a two steps procedure. Firstly, a Delaunay meshing is carried out starting from the depth map provided by the 3D TOF camera; secondly, geodesic distances are computed applying Dijkstra algorithm to previously computed mesh. Moreover, a re-meshing method is proposed in order to deal with self-occlusion problem which occurs in the depth data when a human body is partially occluded by other body segments. Experimental results on both synthetic and real data validate the effectiveness of the proposed approach to classifying four main postures: standing, lying, sitting and bending. © 2011 IEEE.
Autore Pugliese
Tutti gli autori
-
Leone A.; Diraco G.; Siciliano P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
Non Disponibile
ISBN
9781424493128
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social