Football Players classification in a Multi-camera environment

Abstract

In order to perform automatic analysis of sport videos ac-quired from a multi-sensing environment, it is fundamental to face theproblem of automatic football team discrimination. A correct assignmentof each player to the relative team is a preliminary task that togetherwith player detection and tracking algorithms can strongly a®ect anyhigh level semantic analysis. Supervised approaches for object classi¯-cation, require the construction of ad hoc models before the processingand also a manual selection of di®erent player patches belonging to theteam classes. The idea of this paper is to collect the players patches com-ing from six di®erent cameras, and after a pre-processing step based onCBTF (Cumulative Brightness Transfer Function) studying and compar-ing di®erent unsupervised method for classi¯cation. The pre-processingstep based on CBTF has been implemented in order to mitigate di®er-ence in appearance between images acquired by di®erent cameras. Wetested three di®erent unsupervised classi¯cation algorithms (MBSAS - asequential clustering algorithm; BCLS - a competitive one; and k-means- a hard-clustering algorithm) on the transformed patches. Results ob-tained by comparing di®erent set of features with di®erent classi¯ers areproposed. Experimental results have been carried out on di®erent realmatches of the Italian Serie A.1


Tutti gli autori

  • P. Spagnolo; P. L. Mazzeo; ; M. Leo; T. D'Orazio

Titolo volume/Rivista

Lecture notes in computer science


Anno di pubblicazione

2010

ISSN

0302-9743

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile