Exponential Lawson integration for nearly Hamiltonian systems arising in optimal control

Abstract

We are concerned with the discretization of optimal control problems when a Runge-Kutta scheme is selected for the related Hamiltonian system. It is known that Lagrangian's first order conditions on the discrete model, require a symplectic partitioned Runge-Kutta scheme for state-costate equations. In the present paper this result is extended to growth models, widely used in Economics studies, where the system is described by a current Hamiltonian. We prove that a correct numerical treatment of the state-current costate system needs Lawson exponential schemes for the costate approximation. In the numerical tests a shooting strategy is employed in order to verify the accuracy, up to the fourth order, of the innovative procedure we propose.


Tutti gli autori

  • Diele F.; Marangi C.; Ragni S.

Titolo volume/Rivista

Mathematics and computers in simulation


Anno di pubblicazione

2011

ISSN

0378-4754

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile