Exploiting ambiguities in the analysis of cumulative matching curves for person re-identification

Abstract

In this paper, a method to find, exploit and classify ambiguities in the results of a person re-identification PRID) algorithm is presented. We start from the assumption that ambiguity is implicit in the classical formulation of the re-identification problem, as a specific individual may resemble one or more subjects by the color of dresses or the shape of the body. Therefore, we propose the introduction of the AMbiguity rAte in REidentification (AMARE) approach, which relates the results of a classical PRID pipeline on a specific dataset with their effectiveness in re-identification terms, exploiting the ambiguity rate (AR). As a consequence, the cumulative matching curves (CMC) used to show the results of a PRID algorithm will be filtered according to the AR. The proposed method gives a different interpretation of the output of PRID algorithms, because the CMC curves are processed, split and studied separately. Real experiments demonstrate that the separation of the results is really helpful in order to better understand the capabilities of a PRID algorithm.


Tutti gli autori

  • Reno V.; Cardellicchio A.; Politi T.; Guaragnella C.; D'Orazio T.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2016

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile