Explicit symplectic partitioned Runge-Kutta-Nyström methods for non autonomous dynamics

Abstract

We consider explicit symplectic partitioned Runge-Kutta (ESPRK) methods for the numerical integration of non-autonomous dynamical systems. It is known that, in general, the accuracy of a numerical method can diminish considerably whenever an explicit time dependence enters the differential equations and the order reduction can depend on the way the time is treated. In the present paper, we demonstrate that explicit symplectic partitioned Runge-Kutta-Nyström (ESPRKN) methods specifically designed for second order differential equations , undergo an order reduction when M=M(t), independently of the way the time is approximated. Furthermore, by means of symmetric quadrature formulae of appropriate order, we propose a different but still equivalent formulation of the original non-autonomous problem that treats the time as two added coordinates of an enlarged differential system. In so doing, the order reduction is avoided as confirmed by the presented numerical tests.


Tutti gli autori

  • F. Diele; C. Marangi

Titolo volume/Rivista

Applied numerical mathematics


Anno di pubblicazione

2011

ISSN

0168-9274

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile