Explicit symplectic partitioned Runge-Kutta-Nyström methods for non autonomous dynamics
Abstract
We consider explicit symplectic partitioned Runge-Kutta (ESPRK) methods for the numerical integration of non-autonomous dynamical systems. It is known that, in general, the accuracy of a numerical method can diminish considerably whenever an explicit time dependence enters the differential equations and the order reduction can depend on the way the time is treated. In the present paper, we demonstrate that explicit symplectic partitioned Runge-Kutta-Nyström (ESPRKN) methods specifically designed for second order differential equations , undergo an order reduction when M=M(t), independently of the way the time is approximated. Furthermore, by means of symmetric quadrature formulae of appropriate order, we propose a different but still equivalent formulation of the original non-autonomous problem that treats the time as two added coordinates of an enlarged differential system. In so doing, the order reduction is avoided as confirmed by the presented numerical tests.
Autore Pugliese
Tutti gli autori
-
F. Diele; C. Marangi
Titolo volume/Rivista
Applied numerical mathematics
Anno di pubblicazione
2011
ISSN
0168-9274
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social