Enhancement of surface electrical current on silicon via nanodiamond particles deposited by pulsed spray technique
Abstract
The deposition of as-received nanodiamond (ND) particles on silicon substrate was performed by the pulsed spray technique, using a dispersion of 250nm ND in 1,2-dichloroethane. A set of samples was sprayed by varying the number of pulses from 1 to 500. The morphology of the samples was characterized and monitored by means of optical, atomic force, and confocal microscopies. At a low number of pulses, sparse diamond particles were observed, whereas at a high number of pulses dense/quasi-continuous ND layers were formed. The electrical conductivity measurements of surface silicon substrate evidenced a remarkable change for the presence of ND particles. This behavior is also found by theoretical simulations (finite element method). Finally, a comparison between the electrical resistances measured on these samples versus the pulse number and the inverse current density calculated as a function of the number of ND particles, showed a good agreement. The experimental results highlighted an increase of the electrical current by using a number of pulses <100, whereas the simulation results proved the enhancement of current density and its surface rectification by employing a specific number of particles. The current increased by increasing the temperature and during the heating-cooling cycles hysteresis was observed. (a) Scheme of the sprayed ND particles on silicon substrate, (b) 3D AFM image 5×5?m<sup>2</sup> of 10 pulses sample, (c) trends of measured R and calculated 1/J.
Autore Pugliese
Tutti gli autori
-
Cicala G.; Massaro A.; Velardi L.; Senesi G.S.; Perna G.; Marzulli D.; Melisi D.; De Pascali G.; Valentini A.; Capozzi V.
Titolo volume/Rivista
Physica status solidi. A, Applications and materials science
Anno di pubblicazione
2015
ISSN
1862-6300
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social