Enhancement of surface electrical current on silicon via nanodiamond particles deposited by pulsed spray technique

Abstract

The deposition of as-received nanodiamond (ND) particles on silicon substrate was performed by the pulsed spray technique, using a dispersion of 250nm ND in 1,2-dichloroethane. A set of samples was sprayed by varying the number of pulses from 1 to 500. The morphology of the samples was characterized and monitored by means of optical, atomic force, and confocal microscopies. At a low number of pulses, sparse diamond particles were observed, whereas at a high number of pulses dense/quasi-continuous ND layers were formed. The electrical conductivity measurements of surface silicon substrate evidenced a remarkable change for the presence of ND particles. This behavior is also found by theoretical simulations (finite element method). Finally, a comparison between the electrical resistances measured on these samples versus the pulse number and the inverse current density calculated as a function of the number of ND particles, showed a good agreement. The experimental results highlighted an increase of the electrical current by using a number of pulses <100, whereas the simulation results proved the enhancement of current density and its surface rectification by employing a specific number of particles. The current increased by increasing the temperature and during the heating-cooling cycles hysteresis was observed. (a) Scheme of the sprayed ND particles on silicon substrate, (b) 3D AFM image 5×5?m<sup>2</sup> of 10 pulses sample, (c) trends of measured R and calculated 1/J.


Tutti gli autori

  • Cicala G.; Massaro A.; Velardi L.; Senesi G.S.; Perna G.; Marzulli D.; Melisi D.; De Pascali G.; Valentini A.; Capozzi V.

Titolo volume/Rivista

Physica status solidi. A, Applications and materials science


Anno di pubblicazione

2015

ISSN

1862-6300

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile