Detecting falls and vital signs via radar sensing

Abstract

A novel ultra-wideband radar sensor system for simultaneous detection of falls and vital signs is presented. The suggested system is able to deal with real-life conditions, such as lack of real-fall data for training, body movements, several people present, and privacy issues. Micro-Doppler features, extracted from time-frequency spectrograms, are used to classify human actions as related to normal or abnormal activities (falls). A deep learning framework is used to extract and classify such features, also taking into account the specific way the older adult performs activity-of-daily-living actions. Preliminary validation results are very encouraging, showing the effectiveness to achieve good detection performance in assisted living scenarios.


Autore Pugliese

Tutti gli autori

  • Leone A.; Diraco G.; Siciliano P.

Titolo volume/Rivista

Proceedings of IEEE Sensors ...


Anno di pubblicazione

2017

ISSN

1930-0395

ISBN

9781509010127


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile