Detecting falls and vital signs via radar sensing
Abstract
A novel ultra-wideband radar sensor system for simultaneous detection of falls and vital signs is presented. The suggested system is able to deal with real-life conditions, such as lack of real-fall data for training, body movements, several people present, and privacy issues. Micro-Doppler features, extracted from time-frequency spectrograms, are used to classify human actions as related to normal or abnormal activities (falls). A deep learning framework is used to extract and classify such features, also taking into account the specific way the older adult performs activity-of-daily-living actions. Preliminary validation results are very encouraging, showing the effectiveness to achieve good detection performance in assisted living scenarios.
Autore Pugliese
Tutti gli autori
-
Leone A.; Diraco G.; Siciliano P.
Titolo volume/Rivista
Proceedings of IEEE Sensors ...
Anno di pubblicazione
2017
ISSN
1930-0395
ISBN
9781509010127
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social