Dense descriptor for visual tracking and robust update model strategy
Abstract
Context analysis is a research field that is attracting growing interest in recent years, especially due to the encouraging results carried out by the semantic-based approach. Anyway, semantic strategies entail the use of trackers capable to show robustness to long-term occlusions, viewpoint changes and identity swap that represent the main problem of many tracking-by-detection solutions. This paper proposes a robust tracking-by-detection framework based on dense SIFT descriptors in combination with an ad-hoc target appearance model update able to overtake the discussed issues. The obtained performances show how our tracker competes with state-of-the-art results and manages occlusions, clutter, changes of scale, rotation and appearance, better than competing tracking methods.
Autore Pugliese
Tutti gli autori
-
P.L. Mazzeo; P. Spagnolo; M. Leo; P. Carcagni; M. Del Coco: C. Distante
Titolo volume/Rivista
Journal of Ambient Intelligence and Humanized Computing
Anno di pubblicazione
2017
ISSN
1868-5145
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social