Contextual information for the classification of high resolution remotely sensed images
Abstract
The use of remote sensed images in many applications of environmental monitoring,change detection, risks analysis, damage prevention, etc. is continuously growing.Classification of remote sensed images, exploited for the production of land cover maps,involves continuous efforts in the refinement of the employed methodologies. The pixel-wise approach, which considers the spectral information associated to each pixel in theimage, is the standard classification methodology. The continuous improving of spatialresolution in remote sensors requires the focus on what is around a single pixel with theintegration of "contextual" information. In order to produce more reliable land cover mapsfrom the classification of high resolution images, this paper analyzes the effectiveness ofthe integration of contextual information comparing two different pixel-wise techniques forits extraction: 1) the post-classification filtering with a Majority filter applied to the mapproduced by the standard Maximum Likelihood algorithm; 2) the segmentation algorithmSMAP. The results were compared. A GeoEye-1 image, exploited in the framework of theAsi-Morfeo project, was considered.
Autore Pugliese
Tutti gli autori
-
C. Tarantino; F. P. Lovergine; M. Adamo; G. Pasquariello
Titolo volume/Rivista
Rivista italiana di telerilevamento
Anno di pubblicazione
2011
ISSN
1129-8596
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social