Computing the Jordan structure of an eigenvalue
Abstract
In this paper we revisit the problem of finding an orthogonal similarity transformation that puts an $n\times n$ matrix $A$ in a block upper-triangular form that reveals its Jordan structure at a particular eigenvalue $\lambda_0$. The obtained form in fact reveals the dimensions of the spaces of $(A-\lambda_0 I)^i$ at that eigenvalue via the sizes of the leading diagonal blocks, and from this the Jordan structure at $\lambda_0$ is then easily recovered. The method starts from a Hessenberg form that already reveals several properties of the Jordan structure of $A$. It then updates the Hessenberg form in an efficient way to transform it to a block-triangular form in ${\cal O}(mn^2)$ floating point operations, where $m$ is the total multiplicity of the eigenvalue. The method only uses orthogonal transformations and is backward stable. We illustrate the method with a number of numerical examples.
Autore Pugliese
Tutti gli autori
-
N. Mastronardi; P. Van Dooren
Titolo volume/Rivista
SIAM journal on matrix analysis and applications
Anno di pubblicazione
2017
ISSN
0895-4798
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social