Computing the Jordan structure of an eigenvalue

Abstract

In this paper we revisit the problem of finding an orthogonal similarity transformation that puts an $n\times n$ matrix $A$ in a block upper-triangular form that reveals its Jordan structure at a particular eigenvalue $\lambda_0$. The obtained form in fact reveals the dimensions of the spaces of $(A-\lambda_0 I)^i$ at that eigenvalue via the sizes of the leading diagonal blocks, and from this the Jordan structure at $\lambda_0$ is then easily recovered. The method starts from a Hessenberg form that already reveals several properties of the Jordan structure of $A$. It then updates the Hessenberg form in an efficient way to transform it to a block-triangular form in ${\cal O}(mn^2)$ floating point operations, where $m$ is the total multiplicity of the eigenvalue. The method only uses orthogonal transformations and is backward stable. We illustrate the method with a number of numerical examples.


Autore Pugliese

Tutti gli autori

  • N. Mastronardi; P. Van Dooren

Titolo volume/Rivista

SIAM journal on matrix analysis and applications


Anno di pubblicazione

2017

ISSN

0895-4798

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile