An improved method to discriminating agricultural crops using geostatistics and remote sensing
Abstract
Reliable land cover mapping of agricultural areas require high resolution remotesensing and robust classification techniques. In this paper, we propose the integration of spectralinformation with spatial information using the traditional statistical supervised classifier MaximumLikelihood and a geostatistical tool, Indicator Kriging algorithm, for the developmentof land cover maps by supervised classification from remotely sensed data at medium and highspatial resolution. The proposed method showed better results in classes discrimination withsmoother resulting maps than the ones produced using only spectral information. Two differentsatellites imagery were analyzed: a Landsat TM5 image at medium spatial resolution acquiredduring 2006 and an Ikonos II image at higher spatial resolution acquired during 2008. The betterperformance of the combined approach compared to the traditional Maximum Likelihoodtechnique was confirmed by confusion matrix. The overall accuracy increases from 76.16%to 85.96% for LandsatTM image and from 71.56% to 80.25% for the IKONOS image.
Autore Pugliese
Tutti gli autori
-
C. Fiorentino;C. Tarantino; G. Pasquariello; B. Basso
Titolo volume/Rivista
Journal of applied remote sensing
Anno di pubblicazione
2011
ISSN
1931-3195
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social