An adaptive parallel background model for high-throughput video applications and smart cameras embedding

Abstract

Background (BG) modelling is a key task in every computer vision system (CVS) independently of the final purpose for which it is designed. Even if many BG approaches exist (for example Mixture of Gaussians or Eigenbackground), they can not efficiently process real time videos due to the model complexity and to the high throughput of the video flux. One of the most challenging real time applications is the athletic scene processing, because, in this context, there are many critical aspects for defining a BG model: no a-priori knowledge of the static scene, sudden illumination changes and many moving objects that slow down the upgrade phase. The aim of this work is to provide an adaptive BG model able to deal with high frame rate videos (>= 100 fps) in real time processing, and suitable for smart cameras embedding, finding a good compromise between the model complexity and its responsiveness. Real experiments demonstrate that this BG model approach shows great performances and robustness during the real time processing of athletic video frames, up to 100 fps. Copyright 2014 ACM.


Tutti gli autori

  • Renò V.; Marani R.; D'Orzazio T.; Stella E.; Nitti M.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

Non Disponibile

ISBN

9781450329255


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile