A multi-feature scheme for posture recognition with 3D TOF sensor
Abstract
This paper presents a multi-feature approach for detection of key postures by using a MESA SR4000 time-offlight 3D sensor managed by a low-power embedded PC. Acquired data were pre-processed by using a well-established framework including self-calibration, segmentation and tracking functionalities. To accommodate different application scenarios, hierarchical coarse-to-fine features were extracted by exploiting two different descriptors: topological and volumetric. The topological descriptor encoded intrinsic topology of body postures in a skeleton-like representation based on geodesic distance. Instead, the volumetric descriptor used a cylindrical voxelization to describe postures in a histogram-based representation. Both synthetic and real datasets were used to evaluate performance. The complementary discrimination capabilities exhibited by the two descriptors allowed to achieve good results in four different application scenarios with a classification rate greater than 96.4%. © 2012 IEEE.
Autore Pugliese
Tutti gli autori
-
Leone A.; Diraco G.; Siciliano P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
Non Disponibile
ISBN
9781457717659
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social