A kinect-based gesture recognition approach for a natural human robot interface

Abstract

In this paper, we present a gesture recognition system for the development of a human-robot interaction (HRI) interface. Kinect cameras and the OpenNI framework are used to obtain real-time tracking of a human skeleton. Ten different gestures, performed by different persons, are defined. Quaternions of joint angles are first used as robust and significant features. Next, neural network (NN) classifiers are trained to recognize the different gestures. This work deals with different challenging tasks, such as the real-time implementation of a gesture recognition system and the temporal resolution of gestures. The HRI interface developed in this work includes three Kinect cameras placed at different locations in an indoor environment and an autonomous mobile robot that can be remotely controlled by one operator standing in front of one of the Kinects. Moreover, the system is supplied with a people re-identification module which guarantees that only one person at a time has control of the robot. The system's performance is first validated offline, and then online experiments are carried out, proving the real-time operation of the system as required by a HRI interface.


Tutti gli autori

  • Attolico C.; Cicirelli G.; Guaragnella C.; D'Orazio T.

Titolo volume/Rivista

International journal of advanced robotic systems


Anno di pubblicazione

2015

ISSN

1729-8806

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile