A fast algorithm for updating and downsizing the dominant kernel principal components

Abstract

Many important kernel methods in the machine learning area, such as kernel principal component analysis, feature approximation, denoising, compression and prediction require the computation of the dominant set of eigenvectors of the symmetric kernel Gram matrix.Recently, an efficient incremental approach was presented for the fast calculation of the dominant kernel eigenbasis.In this manuscript we propose faster algorithms for incrementally updating and downsizing the dominant kernel eigenbasis. These methods are well-suited for large scale problems since they are both efficient in terms of complexity and data management.


Autore Pugliese

Tutti gli autori

  • Mastronardi N.; Tyrtyshnikov E.; Van Dooren P.

Titolo volume/Rivista

SIAM journal on matrix analysis and applications


Anno di pubblicazione

2010

ISSN

0895-4798

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile