A Critical Case for the Spiral Stability for 2 × 2 Discontinuous Systems and an Application to Recursive Neural Networks

Abstract

We consider a piecewise smooth 2 × 2 system, whose solutions locally spirally move around an equilibrium point which lies at the intersection of two discontinuity surfaces. We find a sufficient condition for the stability of this point, in the limit case in which a first-order approximation theory does not give an answer. This condition, depending on the vector field and its Jacobian evaluated at the equilibrium point, is trivially satisfied for piecewise-linear systems, whose first-order part is a diagonal matrix with negative entries. We show how our stability results may be applied to discontinuous recursive neural networks for which the matrix of self-inhibitions of the neurons does not commute with the connection weight matrix. In particular, we find a nonstandard relation between the ratio of the self-inhibition speeds and the structure of the connection weight matrix, which determines the stability.


Autore Pugliese

Tutti gli autori

  • Berardi M.; D'Abbicco M.

Titolo volume/Rivista

Mediterranean journal of mathematics


Anno di pubblicazione

2016

ISSN

1660-5446

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile