A Bayesian network for flood detection

Abstract

We apply a Bayesian Network (BN) paradigm to the problem of monitoring flood events through synthetic aperture radar (SAR) and interferometric SAR (InSAR) data. BNs are well-founded statistical tools which help formalizing the information coming from heterogeneous sources, such as remotely sensed images, LiDAR data, and topography. The approach is tested on the fluvial floodplains of the Basilicata region (southern Italy), which have been subject to recurrent flooding events in the last years. Results show maps efficiently representing the different scattering/coherence classes with high accuracy, and also allowing separating the multitemporal dimension of the data, where available. The BN approach proves thus helpful to gain insight into the complex phenomena related to floods, possibly also with respect to comparisons with modeling data.


Tutti gli autori

  • D'Addabbo A.; Refice A.; Pasquariello G.; Bovenga F.; Chiaradia M.T.; Nitti D.O.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile