UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes
Abstract
Anew photocatalyst based on nano-sized TiO2 supported on single wall carbon nanotubes (SWCNTs) with tailored photocatalytic properties upon irradiation by both UV and solar simulated light was successfully employed for the degradation of a mixture of 22 organic pollutants in both ultrapure water and real secondary wastewater effluent. First-order degradation rates showed that under UV irradiation nanosized TiO2 supported on SWCNTs is much more effective than conventional Degussa P25 for degradation of iopamidol, iopromide, diatrizoic acid, diclofenac, triclosan and sulfamethoxazole in ultrapure water. For the remaining organics the degradation rates were comparable being in most of the cases Degussa P25 slightly more effective than nano-sized TiO2 supported on SWCNTs. Reactions performed in real secondary wastewater effluent showed a general reduction of degradation rates. Specifically, such a reduction was in the range 9-87% and 9-96% for the Degussa P25 and the nano-sized TiO2 supported on SWCNTs, respectively. Overall, the nano-sized TiO2 supported on SWCNTs under UV irradiation displayed comparable degradation rates with respect to convention Degussa P25. Under simulated solar irradiation the new prepared photocatalyst showed lower efficiency than Degussa P25 in ultrapure water. Such a gap was greatly reduced when the reactions were carried out in real secondary wastewater effluent. The nano-sized TiO2 supported on SWCNTs demonstrated to have the addition benefit to be easily removed from the aqueous solution by a mild centrifugation or a filtration step and, consequently, can be reused for a further photocatalytic treatment batch. Therefore, the obtained results showed that new photocatalyst based on nano-sized TiO2 supported on SWCNTs has proved to be a promising candidate to be used in a photocatalytic based-AOP and to be integrated with a biological step for the effective removal of emerging organic pollutants.
Autore Pugliese
Tutti gli autori
-
AGOSTIANO A.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2015
ISSN
0920-5861
ISBN
Non Disponibile
Numero di citazioni Wos
47
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
54
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social