Updating Knowledge in Feedback-based Multi-Classifier Systems
Abstract
In pattern recognition tasks it is frequent that new (labeled) data became available as the specific application scenario evolves. When a multi expert system (E) is adopted, the collective behavior of classifiers can be used to select the most profitable samples in order to update the knowledge base of each individual classifier. More specifically a misclassified sample, for a particular classifier, is used to update that classifier only if that sample produces a misclassification by the ensemble of classifiers. This approach is compared to situation in which the entire new dataset is used for learning as well as the case in which specific samples are selected by the individual classifier. Successful results have been obtained by considering the CEDAR (handwritten digit) database, moreover it is also shown how they depend by the specific combination decision schema, as well as by data distribution.
Autore Pugliese
Tutti gli autori
-
IMPEDOVO D.;PIRLO G.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
Non Disponibile
ISBN
978-0-7695-4520-2
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
17
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social