Combining Strategies for Semantic Textual Similarity.
Abstract
This paper describes the UNIBA participation in the Semantic Textual Similarity (STS) core task 2013. We exploited three different systems for computing the similarity between two texts. A system is used as baseline, which represents the best model emerged from our previous participation in STS 2012. Such system is based on a distributional model of semantics capable of taking into account also syntactic structures that glue words together. In addition, we investigated the use of two different learning strategies exploiting both syntactic and semantic features. The former uses a combination strategy in order to combine the best machine learning techniques trained on 2012 training and test sets. The latter tries to overcame the limit of working with different datasets with varying characteristics by selecting only the more suitable dataset for the training purpose.
Autore Pugliese
Tutti gli autori
-
CAPUTO A.;SEMERARO G.;BASILE P.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social