Trend cluster based compression of geographically distributed data streams

Abstract

In many real-time applications, such as wireless sensor network monitoring, traffic control or health monitoring systems, it is required to analyze continuous and unbounded geographically distributed streams of data (e.g. temperature or humidity measurements transmitted by sensors of weather stations). Storing and querying geo-referenced stream data poses specific challenges both in time (real-time processing) and in space (limited storage capacity). Summarization algorithms can be used to reduce the amount of data to be permanently stored into a data warehouse without losing information for further subsequent analysis. In this paper we present a framework in which data streams are seen as time-varying realizations of stochastic processes. Signal compression techniques, based on transformed domains, are applied and compared with a geometrical segmentation in terms of compression efficiency and accuracy in the subsequent reconstruction


Tutti gli autori

  • APPICE A.;MALERBA D.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2011

ISSN

Non Disponibile

ISBN

978-1-4244-9925-0


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

6

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile